$\mu = 0.08 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.029$

 $0.30 \times 0.20 \times 0.20$ mm

31692 measured reflections

6941 independent reflections 4703 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6diphenylpiperidin-1-yl)-2-oxoethyl]piperazine-1-carboxylate

Mannangatty Rani,^a Rajamanickam Ramachandran,^b Senthamaraikannan Kabilan^a and Yeon Tae Jeong^{b*}

^aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and ^bDepartment of Image Science and Engineering, Pukyong National University, Busan 608-737, Republic of Korea Correspondence e-mail: ytjeong@pknu.ac.kr

Received 13 January 2011; accepted 26 January 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.142; data-to-parameter ratio = 22.0.

In the title compound, C₂₈H₃₅N₃O₄, the piperidine ring adopts a boat conformation while the piperazine ring adopts a chair conformation with an equatorial orientation of the phenyl groups. The dihedral angle between the mean planes of the benzene rings is $74.14(8)^{\circ}$. The molecular conformation is stabilized by a weak intramolecular C-H···N interaction and the crystal packing is stabilized by weak intermolecular C- $H \cdots O$ interactions.

Related literature

For the biological activity of related structures, see: Elsubbagh et al. (2000); Emami et al. (2006); Foroumadi et al. (2007); Katritzky & Fan (1990); Mobio et al. (1989). For geometrical analysis, see: Cremer & Pople (1975); Emami et al. (2006); Foroumadi et al. (2007); Nardelli (1983).

Experimental

Crystal data

C ₂₈ H ₃₅ N ₃ O ₄	a = 10.9073 (3) Å
$M_r = 477.59$	b = 19.1940 (6) Å
Monoclinic, $P2_1/n$	c = 12.2246 (3) Å

$\beta = 91.809 \ (2)^{\circ}$
V = 2558.00 (12) Å
Z = 4
Mo $K\alpha$ radiation

Data collection

Duiu C	onecno	m	
Bruker	Kanna	APEXII	CCD

Braker Rappa in Lini COD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\rm min} = 0.975, T_{\rm max} = 0.984$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 316 parameters $wR(F^2) = 0.142$ H-atom parameters constrained S = 1.01 $\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 6941 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5 - H5 \cdots N2$ $C8 - H8 \cdots O2^{i}$ $C24 - H24A \cdots O1^{ii}$	0.98	2.51	3.1788 (17)	125
	0.93	2.54	3.4406 (19)	162
	0.97	2.56	3.520 (2)	169

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y, -z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This study was supported financially by Pukyong National University in the 2010 post-doc programme. The authors are thankful to the SAIF, Indian Institute of Technology, Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2086).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- El-subbagh, H. I., Abu-zaid, S. M., Mahran, M. A., Badria, F. A. & Al-obaid,
- A. M. (2000). J. Med. Chem. 43, 2915–2921. Emami, S., Shafiee, A. & Foroumadi, A. (2006). Mini Rev. Med. Chem. 6, 375-386
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Foroumadi, A., Emami, S., Mansouri, S., Javidnia, A., Saeid-Adeli, N., Shirazi, F. H. & Shafiee, A. (2007). Eur. J. Med. Chem. 42, 985-992.
- Katritzky, A. R. & Fan, W. (1990). J. Org. Chem. 55, 3205-3209.
- Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sergeeva, N. D., Lin, S., Stashenku, E. E., Prostakov, N. S. & Andreeva, E. L. (1989). Khim. Farm. Zh. 23, 421-427.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2011). E67, o541 [doi:10.1107/S1600536811003412]

Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6-diphenylpiperidin-1-yl)-2-oxoethyl]piperazine-1-carboxylate

M. Rani, R. Ramachandran, S. Kabilan and Y. T. Jeong

Comment

Several interesting investigations have been carried out with piperidine based heterocyclic compounds and these compounds were found to exhibit numerous pharmacological properties and biological activities such as anticancer, antimicrobial, antiinflammatory, antiviral, antimalarial and anesthetics (El-subbagh *et al.*, 2000; Mobio *et al.*, 1989; Katritzky & Fan, 1990). Similarly, some compounds containing piperazine are used as antibiotic drugs, *e.g.*, Norfloxacin, Ciprofloxacin, Enoxacin, Ofloxacin and Levofloxacine (Emami *et al.*, 2006; Foroumadi *et al.*, 2007).

In the title compound, $C_{28}H_{35}N_3O_4$, the piperidine ring adopts a boat conformation. The corresponding puckering parameters (Cremer & Pople, 1975) and smallest displacement asymmetry parameters (Nardelli, 1983) are $q_1 = 0.6111$ (15) Å, $q_2 = -0.0839$ (15) Å, $Q_T = 0.6168$ (15) Å, and $\theta = 97.81$ (14) °. Unlike, the piperazine ring adopts a chair conformation with $q_1 = 0.0367$ (15), $q_2 = 0.5606$ (15) Å, $Q_T = 0.5618$ (15) Å and $\theta = 3.75$ (15)°. The phenyl groups are orientated to the same side of the piperazine ring. The dihedral angle between the mean planes of the benzene rings is 74.14 (8)°. The molecular conformation is stabilized by a weak intramolecular C5-H5…N2 interaction and the crystal packing by the weak intermolecular C8-H8…O2ⁱ and C24-H24…O1ⁱⁱ interactions [Table 1; symmetry codes: (i) -*x*, -*y*, -*z*+1; (ii) -*x*+1, -*y*, -*z*].

Experimental

A mixture of *N*-chloroacetyl-3,5-dimethyl-2,6-diphenylpiperidin-4-one (0.005 mol), triethylamine (0.01 mol) and *N*-ethoxycarbonylpiperazine (0.005 mol) in toluene were refluxed for about 6–8 h. After the completion of reaction, excess of solvent was removed under reduced pressure. The obtained residue was column chromatographed on silica gel using benzene:ethyl acetate (2:1) mixture as an eluent which afforded the title compound in good yield. Colourless crystals were grown by slow evaporation method using ethanol as solvent.

Refinement

H atoms were positioned and refined using a riding model, with aromatic C—H = 0.93 Å, methine C—H = 0.98 Å, methylene C—H = 0.97 Å and methyl C—H = 0.96 Å. The displacement parameters were set to $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl H atoms and to $U_{iso}(H) = 1.2U_{eq}(C)$ for the other H atoms.

Figures

Fig. 1. A view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

Ethyl 4-[2-(3,5-dimethyl-4-oxo-2,6-diphenylpiperidin-1-yl)-2-oxoethyl]piperazine-1-carboxylate

Crystal data

C ₂₈ H ₃₅ N ₃ O ₄	Z = 4
$M_r = 477.59$	F(000) = 1024
Monoclinic, $P2_1/n$	$D_{\rm x} = 1.240 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 2yn	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.9073 (3) Å	$\theta = 2.0-29.2^{\circ}$
b = 19.1940 (6) Å	$\mu=0.08~mm^{-1}$
c = 12.2246 (3) Å	T = 293 K
$\beta = 91.809 \ (2)^{\circ}$	Prism, colourless
$V = 2558.00 (12) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer	6941 independent reflections
Radiation source: fine-focus sealed tube	4703 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ω and ϕ scans	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -14 \rightarrow 14$
$T_{\min} = 0.975, T_{\max} = 0.984$	$k = -26 \rightarrow 26$
31692 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.142$	H-atom parameters constrained
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0676P)^2 + 0.4844P]$ where $P = (F_o^2 + 2F_c^2)/3$
6941 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
316 parameters	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O2	0.30276 (10)	0.02315 (6)	0.45786 (8)	0.0474 (3)
N1	0.27565 (10)	0.01252 (6)	0.27464 (8)	0.0346 (2)
03	0.83211 (11)	0.26851 (6)	0.33044 (11)	0.0674 (4)
O4	0.87576 (10)	0.17829 (6)	0.44239 (10)	0.0594 (3)
N2	0.48203 (10)	0.12188 (6)	0.31107 (9)	0.0354 (2)
N3	0.72912 (11)	0.16692 (7)	0.31251 (11)	0.0469 (3)
01	0.36909 (18)	-0.11603 (8)	0.02744 (11)	0.1013 (6)
C21	0.35944 (12)	0.12158 (7)	0.35490 (11)	0.0385 (3)
H21A	0.3047	0.1482	0.3068	0.046*
H21B	0.3618	0.1441	0.4260	0.046*
C20	0.30991 (11)	0.04850 (7)	0.36633 (10)	0.0346 (3)
C1	0.24946 (13)	-0.06249 (7)	0.28730 (11)	0.0379 (3)
H1	0.2739	-0.0741	0.3630	0.045*
C23	0.69961 (13)	0.09713 (8)	0.34954 (14)	0.0481 (4)
H23A	0.7577	0.0831	0.4071	0.058*
H23B	0.7059	0.0646	0.2893	0.058*
C6	0.11293 (13)	-0.07761 (7)	0.27691 (11)	0.0391 (3)
C2	0.33470 (14)	-0.10402 (8)	0.21546 (12)	0.0458 (3)
H2	0.3107	-0.1532	0.2182	0.055*
C7	0.03802 (14)	-0.04948 (8)	0.35541 (12)	0.0454 (3)
H7	0.0729	-0.0228	0.4118	0.054*
C12	0.18481 (14)	0.09997 (7)	0.14324 (11)	0.0414 (3)
C5	0.28059 (13)	0.04335 (7)	0.16348 (10)	0.0380 (3)
Н5	0.3615	0.0648	0.1569	0.046*

C4	0.26648 (15)	-0.01210 (8)	0.07262 (11)	0.0473 (3)
H4	0.1785	-0.0218	0.0642	0.057*
C22	0.57133 (12)	0.09542 (7)	0.39208 (12)	0.0405 (3)
H22A	0.5503	0.0479	0.4110	0.049*
H22B	0.5682	0.1234	0.4580	0.049*
C11	0.05813 (15)	-0.11776 (8)	0.19519 (13)	0.0498 (4)
H11	0.1063	-0.1380	0.1424	0.060*
C3	0.32775 (16)	-0.08057 (9)	0.09817 (13)	0.0540 (4)
C13	0.06182 (15)	0.08840 (9)	0.15817 (13)	0.0518 (4)
H13	0.0359	0.0452	0.1832	0.062*
C25	0.51477 (13)	0.19283 (7)	0.28016 (12)	0.0434 (3)
H25A	0.5134	0.2228	0.3440	0.052*
H25B	0.4549	0.2104	0.2266	0.052*
C24	0.64026 (14)	0.19466 (9)	0.23281 (12)	0.0490 (4)
H24A	0.6408	0.1670	0.1664	0.059*
H24B	0.6616	0.2422	0.2145	0.059*
C8	-0.08692 (14)	-0.06037(9)	0.35137 (14)	0.0516 (4)
H8	-0.1355	-0.0410	0.4046	0.062*
С9	-0.13964 (15)	-0.09967 (9)	0.26901 (15)	0.0560 (4)
Н9	-0.2239	-0.1070	0.2660	0.067*
C17	0.21955 (18)	0.16440 (9)	0.10412 (14)	0.0577 (4)
H17	0.3017	0.1731	0.0913	0.069*
C26	0.81377 (13)	0.20954 (8)	0.35904 (13)	0.0470 (3)
C10	-0.06694 (16)	-0.12810 (9)	0.19096 (15)	0.0590 (4)
H10	-0.1025	-0.1546	0.1347	0.071*
C18	0.46803 (16)	-0.09787 (11)	0.25605 (16)	0.0661 (5)
H18A	0.4750	-0.1126	0.3310	0.099*
H18B	0.4943	-0.0503	0.2504	0.099*
H18C	0.5187	-0.1269	0.2122	0.099*
C27	0.97832 (14)	0.21660 (10)	0.49077 (15)	0.0575 (4)
H27A	0.9891	0.2040	0.5673	0.069*
H27B	0.9616	0.2662	0.4867	0.069*
C16	0.1336 (2)	0.21594 (9)	0.08396 (15)	0.0719 (6)
H16	0.1586	0.2593	0.0590	0.086*
C14	-0.02354 (18)	0.14019 (11)	0.13642 (15)	0.0678 (5)
H14	-0.1063	0.1315	0.1465	0.081*
C15	0.0126 (2)	0.20387 (11)	0.10038 (16)	0.0750 (6)
H15	-0.0450	0.2388	0.0871	0.090*
C19	0.3060 (2)	0.01732 (12)	-0.03613 (14)	0.0801 (7)
H19A	0.2654	0.0610	-0.0497	0.120*
H19B	0.2845	-0.0148	-0.0937	0.120*
H19C	0.3932	0.0244	-0.0336	0.120*
C28	1.09184 (17)	0.20086 (12)	0.43263 (18)	0.0743 (5)
H28A	1.1589	0.2266	0.4653	0.111*
H28B	1.0813	0.2138	0.3571	0.111*
H28C	1.1090	0.1519	0.4377	0.111*

				?	
Atomic	displ	acement	parameters	(A²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O2	0.0544 (6)	0.0553 (6)	0.0324 (5)	-0.0062 (5)	0.0018 (4)	0.0037 (4)
N1	0.0375 (6)	0.0359 (6)	0.0303 (5)	-0.0015 (4)	0.0027 (4)	0.0030 (4)
03	0.0553 (7)	0.0542 (7)	0.0916 (9)	-0.0118 (5)	-0.0117 (6)	0.0157 (7)
04	0.0454 (6)	0.0619 (7)	0.0702 (8)	-0.0039 (5)	-0.0110 (5)	0.0083 (6)
N2	0.0334 (5)	0.0359 (6)	0.0368 (6)	-0.0021 (4)	0.0000 (4)	0.0029 (4)
N3	0.0357 (6)	0.0506 (7)	0.0544 (7)	-0.0048 (5)	0.0009 (5)	0.0106 (6)
01	0.1630 (17)	0.0893 (10)	0.0528 (8)	0.0586 (11)	0.0210 (9)	-0.0109 (7)
C21	0.0356 (7)	0.0385 (7)	0.0414 (7)	0.0010 (5)	0.0016 (5)	-0.0017 (6)
C20	0.0284 (6)	0.0408 (7)	0.0347 (7)	0.0021 (5)	0.0036 (5)	0.0009 (5)
C1	0.0429 (7)	0.0350 (7)	0.0359 (7)	0.0000 (5)	0.0037 (5)	0.0029 (5)
C23	0.0386 (7)	0.0415 (8)	0.0642 (10)	0.0019 (6)	0.0009 (7)	0.0053 (7)
C6	0.0447 (7)	0.0325 (6)	0.0402 (7)	-0.0026 (5)	0.0020 (6)	0.0034 (5)
C2	0.0509 (8)	0.0414 (7)	0.0454 (8)	0.0084 (6)	0.0059 (6)	0.0003 (6)
C7	0.0473 (8)	0.0467 (8)	0.0423 (8)	-0.0063 (6)	0.0044 (6)	-0.0023 (6)
C12	0.0502 (8)	0.0430 (7)	0.0308 (6)	0.0022 (6)	0.0003 (6)	0.0038 (5)
C5	0.0400 (7)	0.0436 (7)	0.0306 (6)	-0.0016 (6)	0.0037 (5)	0.0061 (5)
C4	0.0538 (9)	0.0560 (9)	0.0323 (7)	0.0098 (7)	0.0023 (6)	-0.0018 (6)
C22	0.0381 (7)	0.0391 (7)	0.0439 (7)	-0.0009 (5)	-0.0020 (6)	0.0079 (6)
C11	0.0549 (9)	0.0421 (8)	0.0525 (9)	-0.0010(7)	0.0014 (7)	-0.0093 (7)
C3	0.0638 (10)	0.0560 (9)	0.0426 (8)	0.0128 (8)	0.0065 (7)	-0.0071 (7)
C13	0.0530 (9)	0.0537 (9)	0.0491 (9)	0.0088 (7)	0.0108 (7)	0.0091 (7)
C25	0.0416 (7)	0.0406 (7)	0.0475 (8)	-0.0032 (6)	-0.0077 (6)	0.0109 (6)
C24	0.0485 (8)	0.0568 (9)	0.0415 (8)	-0.0098 (7)	-0.0012 (6)	0.0114 (7)
C8	0.0465 (8)	0.0525 (9)	0.0563 (9)	0.0005 (7)	0.0090 (7)	0.0049 (7)
C9	0.0439 (8)	0.0526 (9)	0.0710 (11)	-0.0026 (7)	-0.0050 (8)	0.0072 (8)
C17	0.0710 (11)	0.0515 (9)	0.0501 (9)	-0.0067 (8)	-0.0075 (8)	0.0152 (7)
C26	0.0344 (7)	0.0501 (9)	0.0565 (9)	-0.0004 (6)	0.0049 (6)	0.0050 (7)
C10	0.0600 (10)	0.0494 (9)	0.0665 (11)	-0.0061 (7)	-0.0146 (8)	-0.0075 (8)
C18	0.0532 (10)	0.0853 (13)	0.0599 (10)	0.0208 (9)	0.0053 (8)	-0.0007 (9)
C27	0.0483 (9)	0.0631 (10)	0.0605 (10)	0.0028 (7)	-0.0062 (7)	-0.0116 (8)
C16	0.1107 (17)	0.0461 (10)	0.0582 (11)	0.0082 (10)	-0.0092 (11)	0.0140 (8)
C14	0.0632 (11)	0.0812 (13)	0.0598 (11)	0.0263 (10)	0.0130 (8)	0.0089 (10)
C15	0.0996 (16)	0.0673 (12)	0.0581 (11)	0.0372 (12)	0.0015 (11)	0.0078 (9)
C19	0.1185 (18)	0.0870 (14)	0.0359 (9)	0.0339 (13)	0.0186 (10)	0.0095 (9)
C28	0.0501 (10)	0.0823 (14)	0.0905 (14)	0.0029 (9)	0.0049 (9)	-0.0082 (11)

Geometric parameters (Å, °)

O2—C20	1.2250 (15)	C4—H4	0.9800
N1—C20	1.3590 (17)	C22—H22A	0.9700
N1—C1	1.4768 (17)	C22—H22B	0.9700
N1—C5	1.4846 (16)	C11—C10	1.378 (2)
O3—C26	1.2032 (19)	C11—H11	0.9300
O4—C26	1.3460 (18)	C13—C14	1.382 (2)
O4—C27	1.4491 (19)	С13—Н13	0.9300

N2—C21	1.4561 (17)	C25—C24	1.503 (2)
N2—C22	1.4583 (16)	C25—H25A	0.9700
N2—C25	1.4606 (17)	C25—H25B	0.9700
N3—C26	1.3461 (19)	C24—H24A	0.9700
N3—C23	1.4534 (19)	C24—H24B	0.9700
N3—C24	1.4535 (18)	C8—C9	1.370 (2)
O1—C3	1.1995 (19)	С8—Н8	0.9300
C21—C20	1.5111 (19)	C9—C10	1.373 (3)
C21—H21A	0.9700	С9—Н9	0.9300
C21—H21B	0.9700	C17—C16	1.380 (3)
C1—C6	1.519 (2)	С17—Н17	0.9300
C1—C2	1.5240 (19)	C10—H10	0.9300
C1—H1	0.9800	C18—H18A	0.9600
C23—C22	1.508 (2)	C18—H18B	0.9600
C23—H23A	0.9700	C18—H18C	0.9600
C23—H23B	0.9700	C27—C28	1.478 (2)
C6—C11	1.383 (2)	С27—Н27А	0.9700
C6—C7	1.389 (2)	С27—Н27В	0.9700
C2—C3	1.502 (2)	C16—C15	1.362 (3)
C2—C18	1.526 (2)	С16—Н16	0.9300
С2—Н2	0.9800	C14—C15	1.362 (3)
С7—С8	1.378 (2)	C14—H14	0.9300
С7—Н7	0.9300	C15—H15	0.9300
C12—C13	1.378 (2)	С19—Н19А	0.9600
C12—C17	1.383 (2)	С19—Н19В	0.9600
C12—C5	1.5224 (19)	С19—Н19С	0.9600
C5—C4	1.542 (2)	C28—H28A	0.9600
С5—Н5	0.9800	C28—H28B	0.9600
C4—C3	1.503 (2)	C28—H28C	0.9600
C4—C19	1.519 (2)		
C20—N1—C1	117.26 (10)	O1—C3—C2	120.61 (15)
C20—N1—C5	122.37 (11)	O1—C3—C4	121.42 (15)
C1—N1—C5	119.82 (10)	C2—C3—C4	117.97 (13)
C26—O4—C27	116.47 (13)	C12—C13—C14	120.76 (16)
C21—N2—C22	110.50 (10)	С12—С13—Н13	119.6
C21—N2—C25	109.50 (10)	C14—C13—H13	119.6
C22—N2—C25	109.69 (10)	N2—C25—C24	110.76 (12)
C26—N3—C23	125.75 (13)	N2—C25—H25A	109.5
C26—N3—C24	119.64 (13)	C24—C25—H25A	109.5
C23—N3—C24	113.39 (12)	N2—C25—H25B	109.5
N2—C21—C20	111.89 (11)	C24—C25—H25B	109.5
N2—C21—H21A	109.2	H25A—C25—H25B	108.1
C20-C21-H21A	109.2	N3—C24—C25	109.23 (12)
N2—C21—H21B	109.2	N3—C24—H24A	109.8
C20—C21—H21B	109.2	C25—C24—H24A	109.8
H21A—C21—H21B	107.9	N3—C24—H24B	109.8
O2—C20—N1	121.85 (12)	C25—C24—H24B	109.8
O2—C20—C21	119.11 (12)	H24A—C24—H24B	108.3
N1—C20—C21	119.03 (11)	C9—C8—C7	120.10 (16)

N1—C1—C6	111.71 (10)	С9—С8—Н8	120.0
N1—C1—C2	109.03 (11)	С7—С8—Н8	120.0
C6—C1—C2	117.79 (12)	C8—C9—C10	119.43 (16)
N1—C1—H1	105.8	С8—С9—Н9	120.3
C6—C1—H1	105.8	С10—С9—Н9	120.3
C2—C1—H1	105.8	C16—C17—C12	120.73 (18)
N3—C23—C22	110.14 (12)	С16—С17—Н17	119.6
N3—C23—H23A	109.6	С12—С17—Н17	119.6
С22—С23—Н23А	109.6	O3—C26—O4	123.71 (14)
N3—C23—H23B	109.6	O3—C26—N3	124.54 (14)
С22—С23—Н23В	109.6	O4—C26—N3	111.75 (13)
H23A—C23—H23B	108.1	C9—C10—C11	120.64 (15)
C11—C6—C7	117.74 (14)	C9—C10—H10	119.7
C11—C6—C1	124.57 (13)	C11—C10—H10	119.7
C7—C6—C1	117.68 (12)	C2—C18—H18A	109.5
$C_3 - C_2 - C_1$	112.33 (12)	C2—C18—H18B	109.5
C_{3} $-C_{2}$ $-C_{18}$	107.81 (14)	H18A—C18—H18B	109.5
C1 - C2 - C18	111 38 (13)	C^2 — $C18$ — $H18C$	109.5
C_{3} C_{2} H_{2}	108.4	H18A - C18 - H18C	109.5
C1-C2-H2	108.4	H18B— $C18$ — $H18C$	109.5
$C_{18} - C_{2} - H_{2}$	108.4	04-027-028	110 34 (15)
C_{8} C_{7} C_{6}	121 26 (14)	04-027-H27A	109.6
C8—C7—H7	119.4	C_{28} C_{27} H_{27A}	109.6
C6—C7—H7	119.1	04-027-H27B	109.6
C_{13} C_{12} C_{17}	117.94 (14)	C_{28} C_{27} H_{27B}	109.6
C_{13} C_{12} C_{5}	121.97 (13)	H27A-C27-H27B	108.1
$C_{17} - C_{12} - C_{5}$	120.03(14)	$C_{15} - C_{16} - C_{17}$	120 54 (18)
N1 - C5 - C12	112 88 (11)	$C_{15} - C_{16} - H_{16}$	119.7
N1 - C5 - C4	112.36 (11)	C17—C16—H16	119.7
$C_{12} - C_{5} - C_{4}$	108 85 (11)	C15-C14-C13	120 53 (19)
N1_C5_H5	107.5	$C_{15} - C_{14} - H_{14}$	119.7
C12—C5—H5	107.5	C13 - C14 - H14	119.7
C4—C5—H5	107.5	C_{14} C_{15} C_{16} C_{16}	119.48 (17)
C_{3} C_{4} C_{19}	111 72 (14)	C14-C15-H15	120.3
C_{3} C_{4} C_{5}	114 84 (12)	C16—C15—H15	120.3
$C_{19} - C_{4} - C_{5}$	110.43 (14)	C4— $C19$ — $H19A$	109.5
C3—C4—H4	106.4	C4-C19-H19B	109.5
C19 - C4 - H4	106.4	H19A_C19_H19B	109.5
C5-C4-H4	106.4	C4-C19-H19C	109.5
N2-C22-C23	111 42 (12)	H19A - C19 - H19C	109.5
N2_C22_H22A	109.3	H19B-C19-H19C	109.5
C^{23} C^{22} H^{22A}	109.3	C27—C28—H28A	109.5
N2—C22—H22B	109.3	C27—C28—H28B	109.5
C^{23} C^{22} H^{22B}	109.3	H28A-C28-H28B	109.5
$H_{22}A = C_{22} = H_{22}B$	109.9	$C_{27} = C_{28} = H_{28}C$	109.5
C10-C11-C6	120.82 (15)	$H_{28} = C_{28} = H_{28} C_{28}$	109.5
C10-C11-H11	119.6	H28B-C28-H28C	109.5
C6-C11-H11	119.6	112012 020 11200	107.5
	70.06 (14)	C25 N2 C22 C22	57 (1 (15)
C22 - N2 - C21 - C20	-/0.96 (14)	$U_{23} - N_{2} - U_{22} - U_{23}$	-57.61 (15)

C25—N2—C21—C20	168.12 (11)	N3-C23-C22-N2	54.42 (16)
C1—N1—C20—O2	-10.29 (18)	C7-C6-C11-C10	1.3 (2)
C5—N1—C20—O2	178.25 (12)	C1-C6-C11-C10	-179.10 (14)
C1—N1—C20—C21	169.07 (11)	C1—C2—C3—O1	-164.94 (19)
C5—N1—C20—C21	-2.39 (17)	C18—C2—C3—O1	72.0 (2)
N2-C21-C20-O2	107.37 (14)	C1—C2—C3—C4	14.4 (2)
N2-C21-C20-N1	-72.01 (15)	C18—C2—C3—C4	-108.69 (17)
C20—N1—C1—C6	106.90 (13)	C19—C4—C3—O1	-21.7 (3)
C5—N1—C1—C6	-81.41 (14)	C5—C4—C3—O1	-148.50 (19)
C20—N1—C1—C2	-121.17 (12)	C19—C4—C3—C2	158.92 (17)
C5—N1—C1—C2	50.52 (15)	C5—C4—C3—C2	32.2 (2)
C26—N3—C23—C22	113.00 (16)	C17—C12—C13—C14	-1.1 (2)
C24—N3—C23—C22	-54.22 (17)	C5-C12-C13-C14	-178.29 (15)
N1—C1—C6—C11	116.25 (15)	C21—N2—C25—C24	-179.06 (11)
C2-C1-C6-C11	-11.1 (2)	C22—N2—C25—C24	59.52 (15)
N1—C1—C6—C7	-64.17 (16)	C26—N3—C24—C25	-112.15 (15)
C2—C1—C6—C7	168.49 (12)	C23—N3—C24—C25	55.93 (17)
N1—C1—C2—C3	-54.18 (16)	N2-C25-C24-N3	-57.96 (16)
C6—C1—C2—C3	74.44 (17)	C6—C7—C8—C9	0.1 (2)
N1—C1—C2—C18	66.89 (16)	C7—C8—C9—C10	0.1 (2)
C6—C1—C2—C18	-164.50 (13)	C13—C12—C17—C16	1.9 (2)
C11—C6—C7—C8	-0.8 (2)	C5-C12-C17-C16	179.12 (15)
C1—C6—C7—C8	179.55 (13)	C27—O4—C26—O3	-6.8 (2)
C20—N1—C5—C12	-69.90 (15)	C27—O4—C26—N3	173.41 (13)
C1—N1—C5—C12	118.85 (13)	C23—N3—C26—O3	-175.88 (16)
C20—N1—C5—C4	166.64 (12)	C24—N3—C26—O3	-9.4 (2)
C1—N1—C5—C4	-4.61 (16)	C23—N3—C26—O4	3.9 (2)
C13—C12—C5—N1	-54.40 (18)	C24—N3—C26—O4	170.36 (13)
C17—C12—C5—N1	128.50 (14)	C8—C9—C10—C11	0.4 (3)
C13—C12—C5—C4	70.92 (17)	C6-C11-C10-C9	-1.1 (3)
C17—C12—C5—C4	-106.18 (15)	C26—O4—C27—C28	-88.67 (19)
N1—C5—C4—C3	-37.21 (18)	C12—C17—C16—C15	-1.2 (3)
C12—C5—C4—C3	-162.89 (13)	C12—C13—C14—C15	-0.4 (3)
N1—C5—C4—C19	-164.62 (14)	C13—C14—C15—C16	1.1 (3)
C12—C5—C4—C19	69.69 (17)	C17—C16—C15—C14	-0.4 (3)
C21—N2—C22—C23	-178.42 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
C5—H5…N2	0.98	2.51	3.1788 (17)	125	
C8—H8····O2 ⁱ	0.93	2.54	3.4406 (19)	162	
C24—H24A···O1 ⁱⁱ	0.97	2.56	3.520 (2)	169	
Symmetry codes: (i) $-x$, $-y$, $-z+1$; (ii) $-x+1$, $-y$, $-z$.					

